14 resultados para biodegradation

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradable polymers have opened an emerging area of great interest because they are the ultimate solution for the disposal problems of synthetic polymers used for short time applications in the environmental and biomedical field. The biodegradable polymers available until recently have a number of limitations in terms of strength and dimensional stability. Most of them have processing problems and are also very expensive. Recent developments in biodegradable polymers show that monomers and polymers obtained from renewable resources are important owing to their inherent biodegradability, biocompatibility and easy availability. The present study is, therefore, mostly concemed with the utilization of renewable resources by effecting chemical modification/copolymerization on existing synthetic polymers/natural polymers for introducing better biodegradability and material properties.The thesis describes multiple approaches in the design of new biodegradable polymers: (1) Chemical modification of an existing nonbiodegradable polymer, polyethylene, by anchoring monosaccharides after functionalization to introduce biodegradability. (2) Copolymerization of an existing biodegradable polymer, polylactide, with suitable monomers and/or polymers to tailor their properties to suit the emerging requirements such as (2a) graft copolymerization of lactide onto chitosan to get controlled solvation and biodegradability and (2b) copolymerization of polylactide with cycloaliphatic amide segments to improve upon the thermal properties and processability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LLDPE was blended with poly (vinyl alcohol) and mechanical, thermal, spectroscopic properties and biodegradability were investigated. The biodegradability of LLDPE/PVA blends has been studied in two environments, viz. (1) a culture medium containing Vibrio sp. and (2) a soil environment over a period of 15 weeks. Nanoanatase having photo catalytic activity was synthesized by hydrothermal method using titanium-iso-propoxide. The synthesized TiO2 was characterized by X-Ray diffraction (XRD), BET studies, FTIR studies and scanning electron microscopy (SEM). The crystallite size of titania was calculated to be ≈ 6nm from the XRD results and the surface area was found to be about 310m2/g by BET method. SEM shows that nanoanatase particles prepared by this method are spherical in shape. Linear low density polyethylene films containing polyvinyl alcohol and a pro-oxidant (TiO2 or cobalt stearate with or without vegetable oil) were prepared. The films were then subjected to natural weathering and UV exposure followed by biodegradation in culture medium as well as in soil environment. The degradation was monitored by mechanical property measurements, thermal studies, rate of weight loss, FTIR and SEM studies. Higher weight loss, texture change and greater increments in carbonyl index values were observed in samples containing cobalt stearate and vegetable oil. The present study demonstrates that the combination of LLDPE/PVA blends with (I) nanoanatase/vegetable oil and (ii) cobalt stearate/vegetable oil leads to extensive photodegradation. These samples show substantial degradation when subsequent exposure to Vibrio sp. is made. Thus a combined photodegradation and biodegradation process is a promising step towards obtaining a biodegradable grade of LLDPE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to determine the ability of specifically adapted bacteria to degrade phenol and to quantify the rate of biodegradation at. Different concentrations by mixed as well as individual isolates. Regular quantitative analysis of phenolics and aerobic phenololytic heterotrophs from five different ecosystems were done during 1990-1991, and the ability of microorganisms isolated from those areas, to utilize phenol, o-cresol and orcinol was also studied. In addition, data on environmental parameters like temperature, dissolved oxygen, salinity, pH, organic carbon and nutrients were also collected during the period of study The present study is one of its first kind in natural aquatic environment and has aimed to bring out some idea about the potential phenol biodegrades in such environments where the phenol concentration is beyond permitted level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-density polyethylene was mixed with dextrin having different particle sizes (100, 200 and 300 mesh). Various compositions were prepared and their mechanical properties were evaluated and thermal studies have been carried out. Biodegradability of these samples has been checked using liquid culture medium containing Vibrios (an amylase producing bacteria), which were isolated from marine benthic environment. Soil burial test was done and reprocessability of these samples was evaluated. The results indicate that the newly prepared blends are reprocessable without sacrificing much of their mechanical properties. The biodegradability tests on these blends indicate that these are partially biodegradable

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenol is an aromatic hydrocarbon which exists as a colorless or white solid in its pure state. Over the past several decades, there is growing concern about wide spread contamination of surface and ground water by phenol, due to rapid development of chemical and petrochemical industries. Phenol affects aquatic life even at relatively low concentration (5-25mg/L). Treatment for removal of phenol includes chemical as well as biological processes. Studies show that ligninases such as Lignin Peroxidase and Laccase, produced by Pleurotus sp., can degrade phenol. Spent substrate of Pleurotus mushrooms consists of ligninases. Present work was to investigate the potential of spent substrate of edible mushroom P. ostreatus for biodegradation of phenol. P. ostreatus was cultivated on paddy straw. After harvest, spent substrate was utilized for phenol degradation. According to the enzyme profile of two ligninases present in the spent substrate of P. ostreatus, maximum specific activity for Laccase was observed in 35 day old spent substrate and LiP activity was maximum in 56 day old spent substrate, which together contributed significantly for removal of phenol. Spent substrate of 35th and 56th day were each incubated with phenol sample (1:1w/v) for one day, which resulted in degradation of phenol by 48% and 45% respectively. From these results it appears that, spent substrate of P. ostreatus can be used effectively to remove phenol from industrial effluents

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodegradation is the chemical degradation of materials brought about by the action of naturally occurring microorganisms. Biodegradation is a relatively rapid process under suitable conditions of moisture, temperature and oxygen availability. The logic behind blending biopolymers such as starch with inert polymers like polyethylene is that if the biopolymer component is present in sufficient amount, and if it is removed by microorganisms in the waste disposal environment, then the base inert plastic should slowly degrade and disappear. The present work focuses on the preparation of biodegradable and photodegradable blends based on low density polyethylene incorporating small quantities of ionomers as compatibilizers. The thesis consists of eight chapters. The first chapter presents an introduction to the present research work and literature survey. The details of the materials used and the experimental procedures undertaken for the study are described in the second chapter. Preparation and characterization of low density polyethylene (LDPE)-biopolymer (starch/dextrin) blends are described in the third chapter. The result of investigations on the effect of polyethylene-co-methacrylic acid ionomers on the compatibility of LDPE and starch are reported in chapter 4. Chapter 5 has been divided into two parts. The first part deals with the effect of metal oxides on the photodegradation of LDPE. The second part describes the function of metal stearates on the photodegradation of LDPE. The results of the investigations on the role of various metal oxides as pro-oxidants on the degradation of ionomer compatibilized LDPE-starch blends are reported in chapter 6. Chapter 7 deals with the results of investigations on the role of various metal stearates as pro-oxidants on the degradation of ionomer compatibilized LDPE-starch blends. The conclusion of the investigations is presented in the last chapter of the thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There exists a need for potential microorganism that could facilitate effective bioremediation of crude oil pollutants in the environment. Hence it was desired to isolate a potential bacterium from marine sediment, which often experiences oil pollution and develop a bioprocess for crude oil biodegradation. In the present study the sediment deposits in the beach of Munakkal, Trichur dist, Kerala, collected immediately after the major event Tsunami in 2004 was collected and analyzed by enrichment culture technique towards isolation of potential strains that could degrade crude oil and its fractions. From the results obtained it was found that the sediment deposits harbor several bacteria with potential for degrading hydrocarbons. However, among the strains obtained, isolate no. BTTS 10 showed capabilities for utilizing both alkanes and aromatic hydrocarbons and hence the same was selected for further studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Commercially, Pleurotus spp. of mushroom are cultivated in bags. After mushroom cultivation, spent substrate remains as residual material. Proper recycling of spent substrate is beneficial for our economy. Spent substrate can be utilized for various other value added purposes through the proper knowledge of its components. Composition of various components depends on the activity of extracellular enzymes in the spent substrate. The present study was conducted to know the enzyme profile of some major extracellular enzymes - cellulase, hemicellulase (xylanase), pectinase and ligninase (lignin peroxidase and laccase) and to estimate cellulose, hemicellulose, pectin and lignin in the substrate. The use of spent substrate as a source of fibre and ethanol, and in the biodegradation of phenol by Pleurotus spp. was also investigated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diversity and load of heterotrophic bacteria and fungi associated with the mangrove soil from Suva, Fiji Islands, was determined by using the plate count method. The ability of the bacterial isolates to produce various hydrolytic enzymes such as amylase, gelatinase and lipase were determined using the plate assay. The heterotrophic bacterial load was considerably higher than the fungal load. There was a predominance of the gram positive genus, Bacillus. Other genera encountered included Staphylococcus, Micrococcus, Listeria and Vibrio. Their effectiveness on the degradation of commercial polythene carry bags made of high density polyethylene (HDPE) and low density polyethylene (LDPE) was studied over a period of eight weeks in the laboratory. Biodegradation was measured in terms of mean weight loss, which was nearly 5 % after a period of eight weeks. There was a significant increase in the bacterial load of the soil attached to class 2 (HDPE) polythene. After eight weeks of submergence in mangrove soil, soil attached to class 1 and class 3 polythene mostly had Bacillus (Staphylococcus predominated in class 2 polythene). While most of the isolates were capable of producing hydrolytic enzymes such as amylase and gelatinase, lipolytic activity was low. Class 2 HDPE suffered the greatest biodegradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of commercial nitrifying bacterial products has resulted in significant improvement of nitrification efficiency in recirculating aquaculture systems (RAS). We developed two nitrifying bacterial consortia (NBC) from marine and brackish water as start up cultures for immobilizing commercialized nitrifying bioreactors for RAS. In the present study, the community compositions of the NBC were analyzed by universal 16S rRNA gene and bacterial amoA gene sequencing and fluorescence in situ hybridization (FISH). This study demonstrated that both the consortia involved autotrophic nitrifiers, denitrifiers as well as heterotrophs. Abundant taxa of the brackish water heterotrophic bacterial isolates were Paenibacillus and Beijerinckia spp. whereas in the marine consortia they were Flavobacterium, Cytophaga and Gramella species. The bacterial amoA clones were clustered together with high similarity to Nitrosomonas sp. and uncultured beta Proteobacteria. FISH analysis detected ammonia oxidizers belonging to b subclass of proteobacteria and Nitrosospira sp. in both the consortia, and Nitrosococcus mobilis lineage only in the brackish water consortium and the halophilic Nitrosomonas sp. only in the marine consortium. However, nitrite oxidizers, Nitrobacter sp. and phylum Nitrospira were detected in both the consortia. The metabolites from nitrifiers might have been used by heterotrophs as carbon and energy sources making the consortia a stable biofilm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Occurrence of black yeasts in the slope sediments of Bay of Bengal was investigated during FORV Sagar Sampada cruises 236 and 245. The black yeast population was found to be very scanty in the area and the isolates could be obtained from 200m to 1000m depth regions in the slope sediments. The isolates were identified as Hortaea werneckii by Internal Transcribed Spacer (ITS) sequencing. The biodegradation potential of these strains was found to be very high with all the strains exhibiting protease, lipase and amylase production. The optimum growth conditions were pH 8, salinity 30 ppt and temperature 30oC. The pigment melanin, in these organisms was identified to be of dihydroxynaphthalene type by NMR. The melanin was found to exhibit inhibitory activity against different human and fish pathogens. Melanin degrading enzyme could also be extracted from these organisms

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing amounts of plastic waste in the environment have become a problem of gigantic proportions. The case of linear low-density polyethylene (LLDPE) is especially significant as it is widely used for packaging and other applications. This synthetic polymer is normally not biodegradable until it is degraded into low molecular mass fragments that can be assimilated by microorganisms. Blends of nonbiodegradable polymers and biodegradable commercial polymers such as poly (vinyl alcohol) (PVA) can facilitate a reduction in the volume of plastic waste when they undergo partial degradation. Further, the remaining fragments stand a greater chance of undergoing biodegradation in a much shorter span of time. In this investigation, LLDPE was blended with different proportions of PVA (5–30%) in a torque rheometer. Mechanical, thermal, and biodegradation studies were carried out on the blends. The biodegradability of LLDPE/PVA blends has been studied in two environments: (1) in a culture medium containing Vibrio sp. and (2) soil environment, both over a period of 15 weeks. Blends exposed to culture medium degraded more than that exposed to soil environment. Changes in various properties of LLDPE/PVA blends before and after degradation were monitored using Fourier transform infrared spectroscopy, a differential scanning calorimeter (DSC) for crystallinity, and scanning electron microscope (SEM) for surface morphology among other things. Percentage crystallinity decreased as the PVA content increased and biodegradation resulted in an increase of crystallinity in LLDPE/PVA blends. The results prove that partial biodegradation of the blends has occurred holding promise for an eventual biodegradable product

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a novel improved technology could be developed to convert the recalcitrant coir pith into environmental friendly organic manure. The standard method of composting involves the substitution of urea with nitrogen fixing bacteria viz. Azotobacter vinelandii and Azospirillum brasilense leading to the development of an improved method of coir pith. The combined action of the microorganisms could enhance the biodegradation of coir pith. In the present study, Pleurotus sajor caju, an edible mushroom which has the ability to degrade coir pith, and the addition of nitrogen fixing bacteria like Azotobacter vinelandii and Azospirillum brasilense could accelerate the action of the fungi on coir pith. The use of these microorganisms brings about definite changes in the NPK, Ammonia, Organic Carbon and Lignin contents in coir pith. This study will encourage the use of biodegraded coir pith as organic manure for agri/horti purpose to get better yields and can serve as a better technology to solve the problem of accumulated coir pith in coir based industries